TELSIKS 2013

Blind DFE with Parametric Entropy-Based Feedback

VLADIMIR R. KRSTIĆ
Institute “Mihajlo Pupin”, University of Belgrade

MIROSLAV L. DUKiĆ
The Faculty of Electrical Engineering, University of Belgrade
1. Introduction
The key drawback of blind decision equalization is *error propagation phenomena*.

The classical decision feedback equalizer structure includes feedforward filter (FFF) and feedback filter (FBF) with a nonlinear (hard) decision device.
2. The basic model of blind self-optimized DFE (SO-DFE). This scheme optimizes both the structure and the criterion with the aim to “skip” the error propagation effects, [Labat et al., 1998].

In blind mode SO-DFE transforms its self into the linear equalizer cascaded structure to initialize a convergence process and then, when eye diagram is open enough, transforms itself back into classical nonlinear scheme.

W is all-pole linear recursive equalizer (whitener) and T is FIR equalizer.
The improved version of the SO-DFE scheme, named (Soft-DFE) [Krštić, 2009], performs equalization through three operation modes: (a) blind acquisition, (b) soft transition and (c) tracking.
The basic model of entropy-based soft feedback filter (SFBF) applied to the Soft-DFE acting as a single neuron unit of Bell-Sejnowski type.

\[
J_E(b) = E \left\{ \ln \left| \frac{\partial r_n}{\partial z_n} \right| \right\}
\]

The cost function maximizing the joint Shennon’s entropy (JEM) of SFBF outputs.

\[
g(z_n, \beta) = r_n = z_n \left(1 + \beta |z_n|^2 \right)
\]

The parametric complex-valued nonlinear (activation) function.
SFBF is herustically transformed into two adaptive equalizer structures with JEM type algorithms corresponding to the self-optimized DFE scheme.

\[
JEM - W1: \quad b_{i,n+1,j} = b_{i,n,j} - \mu_W u_{i,n} \left(1 - \beta_W |u_{i,n}|^2\right) u_{i,n-j}^*
\]

\[
JEM - W2: \quad b_{i,n+1,j} = (1 - \gamma_W)b_{i,n,j} - \mu_W u_{i,n} \left(1 - \beta_W |u_{i,n}|^2\right) u_{i,n-j}^*
\]

\[
JEM - D: \quad b_{n+1,j} = b_{n,j} - \mu_D z_n \left(1 - \beta_D |z_n|^2\right) \hat{a}_{n-j}^*, \quad j = 1, \ldots, N.
\]

SFBF-W in blind acquisition mode

SFBF-D in soft transition mode
The Beta-W selection by means of the kurtosis statistics of estimated data symbols at the output of FSE-CMA.

\[kurt = \frac{1}{2} \sum_{i=1}^{2} kurt_i, \quad kurt_i = \frac{kurt(y_{i,n})}{kurt(a_n)} = \left[\frac{\|c_i\|_4}{\|c_i\|_2} \right]^4, \quad \|c_i\|_q = \left[\sum_{k=0}^{L-1} |c_{i,k}|^q \right]^{1/q} \]

Kurtosis statistics of m-QAM signal.

Kurtosis statistics at the output of FSE-CMA.
3.1 Optimal Beta-W parameters for 16- and 32-QAM.

\[\beta_{W,16} = (1.0 - 2.0), \beta_{W,32} = (1.0 - 1.4) \]
Optimal Beta-D parameters for 16- and 32-QAM. The Beta-D is selected to minimize symbol error rate (SER) in soft transition mode.

\[\beta_{D,16} \approx 12.0, \quad \beta_{D,32} \approx 10.0 \]
3.2 Optimal Gamma and Beta parameters for 64-QAM.

\[\{\gamma_w = 2^{-14}, \beta_w \approx 0.3\}, \{\gamma_w = 2^{-13}, \beta_w \approx 0.5\}, \{\gamma_w = 2^{-12}, \beta_w \approx 0.8\} \]
Optimal Beta-D parameter for 64-QAM constellation. The Beta-D is selected to minimize mean-square error transition time (MSE-TT) in soft transition mode.

Optimal Beta-D is estimated in the range of (1.75-2.25).

Attenuation response of multipath channels Mp-(A,B,C,D,E).
The 64-QAM signal in the phase of passing threshold levels: (a) MTL-1, (b) MTL-2 and (c) MTL-3. Presented signals are observed during the periods of time of 1000 symbol intervals.

Simulation setting: channel Mp-C, SNR=30 dB, Beta-W=1.0, Gamma=2E(-12), Beta-D=2.0

(a) $M_{TL1}=7.9$ dB (b) $M_{TL2}=-2.2$ dB (c) $M_{TL3}=-7.9$ dB
The MSE convergence characteristics of Soft-DFE with 64-QAM and Mp channels with SNR=30 dB for Gamma=2E(-13) and Beta-D=2; the curves are averaged over 100 Monte Carlo runs.
6. Conclusions

In this paper the optimization method for the parametric recursive part of the blind Soft-DFE is presented. It is proved via simulations that the parameters of the selected complex-valued nonlinearity can be optimally adjusted for the given signal in the system with a large scale of severe ISI channels.

- The efficiency of the presented method is verified with 16-, 32- and 64-QAM signals.
- The slope Beta of mapping surface of the neuron $SFBF$ decreases by increasing the complexity of signal, i.e., the variance of ISI at the input of Soft-DFE.